
LNIE API Documentation
Release 0.7.0

Kim Tae Hoon

Apr 26, 2017

Contents

1 Introduction 1

2 Key Features 3

3 Todo 5

4 Installation 7

5 API Documentation 9
5.1 LINE Episode I: A New Hope . 9
5.2 LineClient . 12
5.3 Models . 12
5.4 LineAPI . 13
5.5 Known issue . 13

6 Indices and tables 15

7 Echo bot example 17

8 License 19

9 Author 21

i

ii

CHAPTER 1

Introduction

line is a python library that allow you to send and receive a LINE message. With line you can use LINE on any systems
like Ubuntu or make your owb LINE bot which will automatically reply for your message!

Enjoy line and May the LINE be with you...

Warning: Some codes are removed because of the request of LINE corporation. (2014.08.08)

1

LNIE API Documentation, Release 0.7.0

2 Chapter 1. Introduction

CHAPTER 2

Key Features

• login to LINE server

• get a list of contact, group or chat room

• send and receive a message or sticker

• invite, join or leave a group or room

• longPoll method which will allow you to make a LINE bot easily

3

LNIE API Documentation, Release 0.7.0

4 Chapter 2. Key Features

CHAPTER 3

Todo

• Sending a Image

• More usable methods and objects

5

LNIE API Documentation, Release 0.7.0

6 Chapter 3. Todo

CHAPTER 4

Installation

First, you need to install Apache Thrift. Install instructions are here. (This might take some time...)

Next:

$ pip install line

Or, you can use:

$ easy_install line

Or, you can also install manually:

$ git clone git://github.com/carpedm20/line.git
$ cd LINE
$ python setup.py install

7

http://thrift.apache.org/docs/install/

LNIE API Documentation, Release 0.7.0

8 Chapter 4. Installation

CHAPTER 5

API Documentation

LINE Episode I: A New Hope

If you are a core pythonic programmer, you can jump into writing the code right away! But if you are not familiar
with Python, you should read this tutorial first before proceeding to the more details of line. Now, this manual will git
you a quick introduction on how you can send a message and do other things with line

Part 1: Login and Pin authentication

Let’s start with login to LINE and pass through a pin authentication.

>>> from line import LineClient
>>> client = LineClient("carpedm20@gmail.com", "xxxxxxxxxx")
Enter PinCode '7390' to your mobile phone in 2 minutes
>>> client = LineClient("carpedm20", "xxxxxxxxxx")
Enter PinCode '9779' to your mobile phone in 2 minutes

Warning: You will failed to login because of the request of LINE corporation. (I have to remove some codes)
However, you can use this library by login with authToken. The instruction about authToken login is explained in
bellow paragraphs.

As you can see, you can login by making a LineClient instance and pass your email and password as parameters. If
you have a NAVER account and link it to LINE account, you can login with your NAVER account!

Then, you will see a PinCode which you have to put in to your mobile phone to authenticate your LineClinet instance
as a desktop Line client. This number will be expired in 2 minutes, so don’t be lazy!

If you enter your Pincode to your mobile phone, now you can see your authToken which will notify your LINE session.

9

LNIE API Documentation, Release 0.7.0

>>> authToken = client.authToken
>>> print authToken
DJg5VZTBdkjMCQOeodf4.9guiWkX1koTnwiGNVkacva.49blBzv5W9ex/
→˓2M06QQofByLxigMCAnnGfmTOAgY3wo=

With this authToken, you don’t have to enter Pincode when you create a new LineClient instance!

>>> client = LineClient(authToken=authToken)

You can save your authToken in cache like redis or something else!

Note: If the client will be expired after a specific time (I couldn’t find a exact time yet), so you have to get a new
authToken after it is expired.

Part 2: Profile and Contacts

Now, let’s see your profile to check whether PinCode authentication was successful or not.

>> profile = client.profile
>> print profile
<LineContact >

You might want to send any message to your friend that you have succeeded to login to LINE! But you have to choose
which one to send a message.

>>> print client.contacts # your friends
[<LineContact > <LineContact >]

Then, choose anyone to send a hello world message, and send it away!

>>> friend = client.contacts[0]
>>> friend.sendMessage("hello world!")
True

If you want to send an image, you can use sendImage() with specific path for image

>>> friend.sendImage("./image.jpg") # use your path for image to send
True

Or you can use an URL for image to send any image to your friends with sendImageWithURL()!

>>> friend.sendImageWithURL("https://avatars3.githubusercontent.com/u/3346407?v=3&
→˓s=460")
True

If you want to send a sticker (which is one of the most fun features of LINE!)

>>> friend.sendSticker() # send a default sticker
True
>>> friend.sendSticker(stickerId="13",stickerPackageId="1",stickerVersion="100")
True

If you see True message, then it means message is successfully sended to your friend. If you want to receive 10 recent
messages:

10 Chapter 5. API Documentation

LNIE API Documentation, Release 0.7.0

>>> messages = friend.getRecentMessages(count=10)
>>> print messages
[LineMessage (contentType=NONE, sender=None, receiver=<LineContact >, msg="hello
→˓World!")]

I just make a one conversation with so I only get one message with getRecentMessages method.

Part 3: Rooms and Groups

There are two type of chat rooms in LINE, one is just a room with multiple users, and the other is group which have
more features then room. For examle, group has its own name but room don’t have any room for itself.

Now let’s see a list of group and room you are participated in.

>>> print client.groups
[<LineGroup #4>, <LineGroup #1 (invited)>]
>>> print client.rooms
<LineRoom [<LineContact >]>, <LineRoom [<LineContact >, <LineContact >]>]

In the case of client.groups you can see a word (invited) and this represent that you are invited to a group but you didn’t
accep the invitation yet. ‘#{number}’ means the number of members in the specific group. If you want to accept it:

>>> group = client.groups[1]
>>> group.acceptGroupInvitation()
True

Other methods are same as the case of contact like if you want to get a list of recent messages, use getRecentMessages
method:

>>> messages = client.contacts[0].getRecentMessages(count=10)
>>> messages = client.groups[0].getRecentMessages(count=15)

If you have too much groups and want to find a specific group with its name:

>>> group = client.getGroupByName('GROUP_NAME')
>>> contact = client.getContactByName('CONTACT_NAME')

There are other methods in contact, rooms and group instances so I’ll recommend you to take a look at the models
section.

Part 4: Make your own bot

So, most of you may want to use line to make your LINE bot. I also started this project to make a bot, so let’s talk
about how to make our own bot. Below code is a basic structure of a LINE bot:

1 from line import LineClient, LineGroup, LineContact
2

3 try:
4 client = LineClient("ID", "PASSWORD")
5 #client = LineClient(authToken="AUTHTOKEN")
6 except:
7 print "Login Failed"
8

9 while True:
10 op_list = []

5.1. LINE Episode I: A New Hope 11

LNIE API Documentation, Release 0.7.0

11

12 for op in client.longPoll():
13 op_list.append(op)
14

15 for op in op_list:
16 sender = op[0]
17 receiver = op[1]
18 message = op[2]
19

20 msg = message.text
21 receiver.sendMessage("[%s] %s" % (sender.name, msg))

One of the most important line is #12, and you might notice there is a new method named longPoll. This method pull
a list of operations which should be handled by our LINE bot. There are various type of operations, but our interest
might be RECEIVE_MESSAGE operation. This operation contain a new message sent by other contact, room or group.
So we can get a received message and its sender by

sender = op[0]
receiver = op[1]
message = op[2]

LineClient

Introduction

This is the most important class to use LINE with python. You have to make an instance of LineClient first and have
to give your id and password as a parameters to login to LINE server. Then you should enter PinCode to pass through
PinCode authentication

>>> from line import LineClient
>>> client = LineClient("carpedm20@gmail.com", "xxxxxxxxxx")
Enter PinCode '7390' to your mobile phone in 2 minutes
>>> client = LineClient("carpedm20", "xxxxxxxxxx")
Enter PinCode '9779' to your mobile phone in 2 minutes

With authToken of your line instance, you don’t have to enter Pincode everytime when you create a new LineClient
instance.

>>> client = LineClient(authToken=authToken) # login with authToken

LineClient

Models

Introduction

This page intorduce you a list of core models which is used in LINE API. The name of each models tell you what it is
intuitively. In most cases, you don’t have to create this instances, but if you want to change line, I hope this documents
wil help you to find what you want.

12 Chapter 5. API Documentation

LNIE API Documentation, Release 0.7.0

LineMessage

LineBase

LineContct

LineRoom

LineGroup

LineAPI

Introduction

This is a python wrapper of official LINE thirft API. There are other functions which is not implemented to line like
kickoutFromGroup things, so you can add other API here and use it as your way.

LineAPI

Known issue

1. Garbage data with python Thrift

If you use methods like curve.ttypes.Location which get or send double type data through Thrift, you might get some
garbage values.

Thre reason of this error is that Thrift 0.9.1 installed via pip has an issue with serialization&deserialization of double
type using CompactProtocol as described in here.

Below is a patch which is suggedsted by Wittawat Tantisiriroj (wtantisiriroj@gmail.com)

– Patch –

diff --git a/lib/py/src/protocol/TCompactProtocol.py b/lib/py/src/protocol/
→˓TCompactProtocol.py
index cdec607..c34edb8 100644
--- a/lib/py/src/protocol/TCompactProtocol.py
+++ b/lib/py/src/protocol/TCompactProtocol.py
@@ -250,7 +250,7 @@ def writeI64(self, i64):

@writer
def writeDouble(self, dub):

- self.trans.write(pack('!d', dub))
+ self.trans.write(pack('<d', dub))

def __writeString(self, s):
self.__writeSize(len(s))

@@ -383,7 +383,7 @@ def readBool(self):
@reader
def readDouble(self):
buff = self.trans.readAll(8)

5.4. LineAPI 13

https://issues.apache.org/jira/browse/THRIFT-1639
mailto:wtantisiriroj@gmail.com

LNIE API Documentation, Release 0.7.0

- val, = unpack('!d', buff)
+ val, = unpack('<d', buff)

return val

def __readString(self):

14 Chapter 5. API Documentation

CHAPTER 6

Indices and tables

• search

15

LNIE API Documentation, Release 0.7.0

16 Chapter 6. Indices and tables

CHAPTER 7

Echo bot example

from line import LineClient, LineGroup, LineContact

try:
client = LineClient("ID", "PASSWORD")
#client = LineClient(authToken="AUTHTOKEN")

except:
print "Login Failed"

while True:
op_list = []

for op in client.longPoll():
op_list.append(op)

for op in op_list:
sender = op[0]
receiver = op[1]
message = op[2]

msg = message.text
receiver.sendMessage("[%s] %s" % (sender.name, msg))

17

LNIE API Documentation, Release 0.7.0

18 Chapter 7. Echo bot example

CHAPTER 8

License

Source codes are distributed under BSD license.

19

LNIE API Documentation, Release 0.7.0

20 Chapter 8. License

CHAPTER 9

Author

Taehoon Kim / @carpedm20

21

http://carpedm20.github.io/about/

	Introduction
	Key Features
	Todo
	Installation
	API Documentation
	LINE Episode I: A New Hope
	LineClient
	Models
	LineAPI
	Known issue

	Indices and tables
	Echo bot example
	License
	Author

